

Tanta university - faculty of science				
	Department of Mathematics			
Final	Exam for the Third Semester 2020-20	21		
Course Title: MA3125	Abstract Algebra and Topology			
Date: 14/1/2021	Mathematics & Comp. Science	Time Allowed:2H		

Answer the following questions:

Question 1: Complete the following sentences with suitable notations (20 Points)

No.	Sentence
1	In any topological space, a subset N is said to be a of
	the point p if there exists an open set U such that $p \in U \subseteq N$.
2	A ring having a multiplicative identity element is called
3	Let X be any non-empty set the collection of all subsets
	of X is called the topology on the set X .
4	The topology $T = \{X, \varphi\}$ on $X = \{0,1\}$ is called the topology on X .
. 5	A ring for which multiplication binary operation is abelian is called ring.
6	If R is a ring with zero element $z \in R$. An element $a \neq z$ of R is called
	If there exists an element $b \neq z$ of R such that $a.b = z$
	or $b.a = z$.
7	Let (X, τ) be a topological space. A subset S of X is said to be a
	set in (X, τ) if its complement in X , is open in (X, τ) .
8	A ring R is called if it is commutative, has unity and
	without zero divisors.
9	In a topological space, the interior of the complement of any subset is
	called the of this set.
10	A ring of at least two elements is called skew field if
	Co on nort nago

Go on next page

Examiners:	Prof. Dr. Amgad Salem Salama

Question 2: Choose the correct answer (40 Marks)

ŀ	r	,		
1) $\tau = \{X, \varphi, \{a\}, \{b\}\}$	}, {a, b}, {a, c}} is not a t	opology on $X = \{a, b\}$	$\{c,d\}$ because	
a) $\{a,b,c\} \nsubseteq \tau$	b) $\{a\} \cup \{b\} \notin \tau$ c	$) \{a,b,c\} \notin \tau \qquad \mathbf{d}) \{$	$\{a,b\}\cap\{a,c\}\notin\tau$	
2) In any topological is called	al space (X, τ) the set $\{T_1, \dots, T_n\}$	$p: \forall G \in \tau, p \in G, (G - G)$	$-\{p\})\cap A\neq \emptyset$	
a) closure of A	b) limit points of A	c) interior of A	d) exterior of A	
	,			
3) In any topologic	al space (X, τ) the set \overline{A}	$\cap \overline{(X-A)}$ is called.	****	
a) boundary of A	b) interior of A	c) closure of A	d) exterior of A	
, , , , , , , , , , , , , , , , , , , ,				
4) In any topological	al space (X, τ) the closu	are of any subset $A \subseteq$	X equal	
a) $\overline{A} \cap A^o$	b) $A^b \cap A^o$	c) $A^b \cup A^o$	d) $\overline{A} - A^o$	
<u> </u>				
5) is t	he biggest open set con	tained in the subset A		
\overline{a}) \overline{A}	b) A ^b	c) A^{ex}	d) A ^o	
6)is t	he smallest closed set c	ontaining the subset A	4.	
$\overline{\mathbf{a}}$) \overline{A}	b) A ^o	c) A ^b	d) A^{ex}	
[note: N. 1.]	od system for any point	•	$\{X\}$; in the case	
	ical space (X, τ) is		d) domas	
a) closed	b) indiscrete	c) discrete	d) dense	
ON The subfamily O	- (V (a, b));a NOT a	hasa far the tanalog		
The subfamily $\beta = \{X, \{a, b\}\}$ is NOT a base for the topology $\tau = \{X, \varphi, \{a, b\}, \{c, d\}\}$ on $X = \{a, b, c, d\}$ because				
$[A, \psi, \{a, b\}, \{c, b\}]$	b) $\{c,d\} \in \tau$ and it	$a)$ (c, d) $\in \pi$ but it	d) (a b) = 7	
$\{u, v\} \in V$ but it not be a union of	a union of	not be a union of	and it a	
	members of β .	members of β .	members of β .	
members of β .	members of p.	inchiocis of p.	members of p.	
(N) 751 (N) (C)	1 47 5 7)		14. 1. 4.	
E * 334	$r + s\sqrt{17}$: $r, s \in Z$, and r , and		multiplication	
a) zero divisors	b) no zero divisors	c) no zeros	d) no inverse	
a) Zero urvisors	D) HO ZOTO UTVISOTS	C) IIO ZOLOS	4, 110 1114 0150	
$10)$ An element $a \in$	R of a ring R is a divis	sor of an element h =	R if there exists	
An element $a \in R$ of a ring R is a divisor of an element $b \in R$ if there exists an element $c \in R$ such that				

Go on next page

c) a = b.c

d) b = a.c

b) c = a.b

a) a|b.c

Examiners: Prof. Dr. Amgad Salem Salama

In the usual topology the largest open set contained in [1,2]U{4,5,6}is (1,2]**b)** (1,2] U {4,5,6} c) (1,2)U{4,5,6} **d)** (1,2) In topological spaces, the arbitrary intersection of open sets is a) always an open b) always a closed c) always a d) not always set singleton set set an open set 13) In the usual topology, an open set can always be written as ... a) an arbitrary union b) an arbitrary c) a finite union of d) a finite of open intervals intersection of open open intervals intersection of intervals closed intervals In the ring (R,+, o) such that $a \circ b = a + \sqrt{2}b - 2$, the identity of this ring is equal c) $1 + \sqrt{2}$ d) $1/\sqrt{2}$ a) $\sqrt{2}$ **b)** $2 + \sqrt{2}$ The identity element for the binary operation * defined by a * b = ab/5, where a, b are the elements of a set of non-zero rational numbers, is c) 5 d) 1/5 The set $S = \{1, i, -i, -1\}$ with multiplication operation is a) semigroup b) subgroup c) monoid d) abelian group In the ring (R,+, o) the element $u \in R$ is the multiplicative identity of R if for any $a \in R$, **a)** a + u = a**b)** $a \circ u = u$ c) $u \circ a = a$ $\mathbf{d)} \ u + a = a$ **18)** A ring (R, *, +) is commutative if for any, $y \in R$, a) x * y = y * x**b)** x * y = y + x **c)** x + y = y * xIn the ring $(P(X), \Delta, \cap)$ the identity element is b) Ø d) $A \subset X$ a) X c) P(X)In the ring (R,+, o) such that $a \circ b = a + \sqrt{2}b - 2$, the multiplicative inverse of $a \in R$ is c) $1 + \sqrt{2} - a/\sqrt{2}$ **d)** $a/\sqrt{2} + \sqrt{2}$ a) $\sqrt{2}$ **b)** $2 + \sqrt{2} - a$ Go on next page

Prof. Dr. Amgad Salem Salama

Examiners:

Question 3: (20 Points)

a) Consider the function $f: X \to Y$ from X to Y and suppose τ is a topology on Y. Prove that $\tau^* = \{G \subseteq X : G = f^{-1}(U), U \in \tau\}$ is a topology on X.

Marie Car

- b) In any topological space (X, τ) prove that $(A \cup B)' = A' \cup B'$, for any $A, B \subseteq X$.
- c) Consider the topology $\tau = \{X, \varphi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ on $X = \{a, b, c, d, e\}, \text{ Find } A^0, \overline{A}, A^{ex}, A^b, A' \text{ for the subset } A = \{a, d, e\}.$
- d) Prove that the collection $\beta \subseteq P(X)$ is a base of a topology on X iff i) $X = \bigcup \{B: B \in \beta\}$ and ii) $\forall A, B \in \beta \Longrightarrow A \cap B = \bigcup \{B_i: B_i \in \beta\}$.

Question 4: (20 Points)

- a) Prove that if a ring R has a unity, then it is unique.
- b) Prove that if the multiplicative inverse of an element of a ring R with unity exists, then it is unique.
- c) Prove that the algebraic system $(P(X), \Delta, \cap)$ is a Boolean ring where Δ , is the symmetric difference of sets.
- d) Prove that the set $S = \{x + y\sqrt[3]{3} + z\sqrt[3]{9} : x, y, z \in \mathbb{Q}\}$, is a ring with respect to addition and multiplication on \mathcal{R} .

End Exam
With my best wishes

Examiners: Prof. Dr. Amgad Salem Salama

(3RD YEAR) STUDENTS OFMATHEMATICS

COURSE CODE: MA3111

TOTAL ASSESSMENT MARKS:150

- [1] (a) Define inertial frame and give two example one for inertial system and anther for no inertial system with prove.
 - (b) Explain Michleson-Morley experiment and drive the results it.
- [2] (a) Drive Lorantz transformation equations. And find the general formula it in a vector form.
- (b) Prove that in the two system S and \hat{S} if $\Box = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \frac{1}{c^2} \frac{\partial^2}{\partial z^2}$ $\mathbf{\hat{\Box}} \Phi = \mathbf{\Box} \Phi$ by use Lorantz transformation equations.
- [3] Apply Lorantz transformation equations for if the velocity components for a moving point P in S and \hat{S} are given by $(u_x + u_y + u_z)$ and $(\hat{u}_x + \hat{u}_y + \hat{u}_z)$ find the relation between it.
- [4] We have two events whose

$$S_{12}^2 = c^2 (t_2 - t_1)^2 - (x_2 - x_1)^2 - (y_2 - y_1)^2 - (z_2 - z_1)^2,$$

prove that if $S_{12}^2 > 0$ the interval is time-like and if $S_{12}^2 < 0$ the interval is space-like.

DV A BAIRDEDC	DR./MOHAMED ABDOU KHALIFA	DR/
EXAMINERS	DR/	DR/

TANTA UNIVERSITY

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS

EXAMINATION FOR PROSPECTIVE STUDENTS (3RD YEAR) STUDENTS OF MATHEMATICES

COURSE TITLE:

Abstract Algebra 1

COURSE CODE: MA 3107

DATE: 4/3/2021

FIRST TERM

TOTAL ASSESSMENT MARKS 150

TIME ALLOWED: 2 HOUR

Answer the following questions:

Question 1 ($40 = 4 \times 10$)

- 1- Let H be a subgroups of a group G. Prove that aH = H iff $a \in H$.
- 2- Prove that a group G is abelian if and only if $(ab)^2 = a^2b^2$, $\forall a, b \in G$.
- 3- If H is a normal subgroup of a group G_1 and f is a homomorphism of a group G into a group G_1 , then verify that $f^{-1}(H)$ is a normal subgroup of a group G.
- 4- Give an example to construct a quotient group G/N, for a normal subgroup N of G.

Question 2 (40 = 10 + 20 + 10)

- 1- Describe the external direct product of a family of groups and give an example.
- 2- Define the internal direct product of a group by two ways, verify that such two ways are equivalent.
- 3- Find two normal subgroups H, K of the group $G = \{a, b: a^2 = b^2 = (ab)^2 = 1\}$ such that $G = H \otimes K$.

Question $3(40 = 4 \times 10)$

- (a) Let $f: G \to G_1$ be a homomorphism of a group G into a group G_1 . Prove
 - (1) $[f(a)]^{-1} = f(a^{-1}), \forall a \in G$
- (2) f(G) is a subgroup of G_1 .

- (3) $Ker f \triangleleft G$.
- (b) State and prove the third isomorphism Theorem of groups.

Question 4 (30)

Discuss: There is a one to one correspondence between normal subgroups of a group G and congruence relations on G. Clarify your answer, whenever $G = \{a, b: a^2 = b^2 = (ab)^2 = 1\}$.

		_	_	_		
$\mathbf{F}\mathbf{X}$	Å	M	٦N	IE.	RS	

DR./ S. EL-ASSAR

DR./ ABD EL-MOHSEN BADAWY

With our best wishes

Tanta University Faculty of Science

Department of Mathematics

<u>Final</u>	term	exam t	or the	First	seme	ester	2020-	2021	

Course title: Operations Research (1) Course code: MA3103

Date: 11/3/2021 Total Marks: 150 Time allowed: 2 Hours

Answer all the following questions:

First question: (40 Marks)

- (a) For Linear Programming define the following:
- "convex set, convex function, extreme point, feasible solution, optimal solution".
- (b) Examine the convexity to the set: $S = \{(x_1, x_2) : 4x_1 + 3x_2 \le 6, x_1 + x_2 \ge 1\}$
- (c) Prove that the intersection of two convex sets S_1, S_2 in R^n is convex set.

Second question: (35 Marks)

(a) Solve graphically the following LPP:

$$\max z = 5x_1 + 4x_2$$
 st. $4x_1 + x_2 \le 40$, $2x_1 + 3x_2 \le 90$, $x_1, x_2 \ge 0$

(b) By Simplex method solve the following LPP:

$$\max z = 2x_1 + 2x_2 + x_3$$

st.
$$2x_1 + 3x_2 + x_3 \le 300$$
; $x_1 + x_2 + 3x_3 \le 300$; $x_1 + 3x_2 + x_3 \le 240$; $x_1, x_2, x_3 \ge 0$

Third question: (35 Marks)

(a) Write the dual of

$$\min z = x_2 + 3x_3$$
 s.t $2x_1 + x_2 \le 3$, $x_1 + 2x_2 + 6x_3 \ge 5$, $-x_1 + x_2 + 2x_3 = 2$, $x_1, x_2, x_3 \ge 0$.

(b) Determine the basic solutions of the following system:

$$2x_1 - x_2 + 2x_3 = 3$$
, $x_1 + 2x_2 = 4$

Fourth question: (40 Marks)

- (a) Explain the Transportation problem?.
- (b) By using North West Corner Rule find an initial basic feasible solution for the following transportation problem:

Examiners: Prof. S. Ammar Dr. N. El-Kholy

TANTA UNIVERSITY FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS

EXAMINATION FOR PROSPECTIVE STUDENTS (THIRD MATH. & COMP. SCI.)

COURSE TITLE: NUMERICAL ANALYSIS (FIRST TERM)

COURSE CODE: MA 3103

DATE: 19/1/2021

MAYO 2020 -2021

TERM: FIRST

TOTAL ASSESSMENT MARKS:

TIME ALLOWED: 2 HOURS

Answer the following questions:

- 1. By the Bisection method, find a real root for the nonlinear equation: $f(x) = x^3 x + 1 = 0$. (22 M)
- 2. Find f(x) and f(4.5) from the data: f(1) = -6, f(2) = -1, f(3) = 16, f(4) = 51 and f(5) = 110. (20 M)
- 3. Prove that: $\Delta^{n+1} f(x) = 0$, f(x) is a polynomial of degree less than or equal. (20 M)
- 4. Prove that Jacobi formula converges for solving the following linear system, then find its approximate roots:

$$10x_1 + 3x_2 - x_3 = 12,$$

$$4x_1 + 10x_2 - x_3 = 13,$$

$$-x_1 + 5x_2 + 10x_3 = 14.$$
(22 M)

- 5. Find f'(x), f''(x) and f'''(x) at x = 0.5, from the data: f(1) = 2, f(0) = -1 and f(3) = 14 for the function f(x). (22 M)
- 6. Evaluate the integral $\int_{0}^{2} \frac{1}{x+1} dx$, using Trapezoidal rule, with h = 0.25. Then estimate the error. (22 M)
- 7. Solve, using Taylor's method, the initial value problem: $y' = -xy^2$, y(0) = 2. (22 M)

EXAMINERS	PROF. DR/ A. A. HEMEDA	PROF. DR/ A. R. ELNAMORY
EAAMINERS	DR/	DR/
		With my hast arichas

vvitn my oest wisnes

Tanta University Faculty Of Science Department of Mathematics

Departime	at of Mathematics	
Final Term Exam For	The First Semester	2020/2021
Programme Title: Computer Science		Level: Three
Course Title: Boolean Algebra And Mathematical Logic		Course Code: MA3113
Total Assignment Marks: 150 Marks	Date: 18/3/2021	Time Allowed: 2 Hours

(Note: Exam has Two Pages).

Answer the following questions:

Question 1: (40 Marks)

a- Test the validity of the following arguments using the truth table test:

$$\frac{q \to r}{\therefore p \to r}.$$

b- Test the validity for the following:

$$\forall x (p(x) \to q(x))$$

$$\exists x (p(x) \to \neg r(x))$$

$$\vdots \exists x (q(x) \land \neg r(x))$$

(20 Marks)

(20 Marks)

Question 2: (35 Marks)

- a- Translate into logic:
 - i. Both p and either q or r.
 - ii. If p then q or r.
 - iii. For all x, if x is an integer, then x is either positive or negative.
 - iv. Some real numbers are integers.
 - v. At least two children are hungry.

(15 Marks)

- b- Define a structure U for a given first-order language, consider the structure $U = (N; \le, S, 0)$ and let $s: V \to N$ be the function $s(v_i) = i 1$.
 - i. Compute $\bar{s}(fffv_1)$.
 - ii. Is $\models_{U} pfv_1c[s]$?

(20 Marks)

Question 3: (40 Marks)

- a- Let $\mathcal{B}=(B;+,\cdot)$ be a Boolean Algebra. Show that: $ab+\bar{a}c+bc=ab+\bar{a}c,\ a,b,c\in B.$ (10 Marks)
- b- The function F = (x' + y' + z')(x' + y + z')(x + y + z')(x + y + z) is in CNF. Write F in DNF, then construct the table of this function. (15 Marks)
- c- Find the Boolean function which represents the following circuits. Simplify if possible.

(15 Marks)

(Please, Turn Of The Page)

Question 4: (35 Marks)

- a- Define a Boolean ring. If R is a Boolean ring, show that R must be:
 - i.: Of characteristic 2 (i.e. $2a = 0, \forall a \in R$).
 - ii. Commutative.

(20 Marks)

b- Let $\mathcal{B} = (B; V, \Lambda, ', 0, 1)$ be a Boolean algebra. Prove that if I is an ideal of B, then I is an ideal of B (the corresponding Boolean ring). (15 Marks)

With My Best Wishes.

Examiners	Prof. Dr. Tahany El-Sheikh	•	

Mathematics Department, Facult	y of Science, Tanta University
Branch: Math. Dept.	Sub-branch: General Math.
Examination for Third Year Students	Term: First
Course Title Electromagnetic	Course Code: MA3105
Date: January 2021	Time Allowed: 2 Hours

Answer the Following Questions:

Question One:

- a) Explain the procedure of obtaining \vec{E} due to the line charge, surface charge and volume charge.
- b) State and prove the Gauss's law.
- c) State and explain Biot-Savart law.

Question Two:

Find the electric potential $\emptyset(x,y)$ in a region with the following boundary conditions:

$$\emptyset = 0$$
 at $y = 0, 0 \le x < \infty$
 $\emptyset = 0$ at $y = a, 0 \le x < \infty$
 $\emptyset = 1$ at $x = 0, 0 \le y < a$
 $\emptyset = 0$ at $x \to \infty, 0 \le y \le a$

Question Three:

Find the electric field and the electric potential in the plane at a point $P(r, \theta)$ due to an electric dipole located at the origin.

	· · · · · · · · · · · · · · · · · · ·
Examiners:	د/ محمد ملیجی شاهین

دور بنایر ۲۰۲۱ الزمن: ساعتان

المستوى: الثالث (ش. رياضيات) المادة: تحليل حقيقي ا

جامعة طنطا كلية العلوم

أجب عن الأسئلة التالية:

1) أ. عرف المجموعة Q واذكر ٥ خواص رياضية لها .

$$F[0,9] \ni f(x) = \sqrt{\frac{8}{(x+1)(x+9)}}$$
 ب. اکمل: $||f|| = \dots$

$$F[1,3] \ni f(x) = \sqrt{\frac{18}{x(x^2+9)}}$$
 حيث $||f|| = : (۲) ا ا اكمل : = ||f|| = المفتوحة B مع ذكر امثلة لها.$

قبت أن
$$S = \{\frac{n}{n+2}: n \in N\}$$
 لها نقطة نهاية وتحقق نظرية ف - بو. $S = \{\frac{n}{n+2}: n \in N\}$ اثبت أن S مجموعة (محدودة - تامة – مغلقة – قابلة للعد)؟ ولماذا؟

- 3) أ. اثبت أن المجموعة R متصلة مفتوحة كثيفة . $\sqrt{2}$ ب. اذكر متتابعة كوشى من أعداد نسبية تقاربية إلى $\sqrt{2}$ مع توضيح الإجابة.
- وه الفترات لها ؟ $I_n = \left[\frac{-1}{n}, \frac{1}{n}\right]$ البت ان $f(x) = \begin{cases} 3x^2, 0 \le x \le 1 \\ x+2, 1 < x \le 3 \end{cases}$ عين التغير الكلي $f(x) = \begin{cases} 3x^2 < 0 \le x \le 1 \\ 0 \le 0 \end{cases}$

مع أطيب التمنيات بالنجاح .. د .سعيد أحمد أبو العلا واللجنة